Significance Statement
The need for curbing nuclear waste produced from modern technological industries is very important as it poses risk to health and ecosystem. Recently, technologies involving the use of nanomaterials to remove these wastes have shown certain positive results.
However, there arises a need for enhancing the adsorption qualities of these nanomaterials. Researchers have discovered that polydopamine when synthesized with magnetic nanoparticles have high adsorption qualities. Hence, different morphologies of the synthesis of polydopamine and magnetic nanoparticles have been investigated to get a desired adhesive and removal qualities of these toxic wastes that arises from nuclear energy.
Professor Ken Cham-Fai Leung and colleagues for the first time synthesized magnetite (Fe3O4) and polydopamine dual shelled microspheres with hollows also having controllable tunable features. Characterization of the synthesized magnetic nanoparticle was carried out with the aid of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and MPMS XL magnetometer. Their work was published in Journal of Materials Chemistry A.
Results from scanning electron microscopy and transmission electron microscopy confirmed rapid polymerization with the well-ordered arrangement of monodispersed synthesis of polydopamine layer on hollow core of magnetite. The shell thickness of the hollow microsphere was 50nm with its core size at 260nm. Depending on the concentration of polydopmaine on magnetite hollow spheres, the shell thickness and total size could be controlled, verifying the tunable properties provided by the synthesis process.
As a result of polymerization of polydopamine layer which was attributed to polyacrylamide chains, surface coatings on the magnetite hollow sphere were found both on the inner and outer surfaces. They also discovered that surface state and core size of the magnetite played a major role in determining the uniform coating and less variable aggregates of the encapsulated polydopamine nanoparticles.
The synthesized method by the way of the authors when tested with other magnetic nanoparticle shapes also provided uniform and well-ordered coating of polydopamine shells on their respective core size.
The authors further tested the synthesized polydopamine and magnetic hollow sphere for entrapment of europium, a nuclear fission product. At first, it became discovered that the pH values of the electrolyte solution played a major role in the adsorption of the waste element. When observed for a period of 60min, the removal capacity for the synthesized polydopamine with magnetic hollow sphere was found to be higher compared to that of uncoated magnetic hollow spheres.
Adsorption capacity for the europium ion Eu (III) entrapment was also found to be 151.05mg g-1 compared to the uncoated magnetic hollow spheres with an adsorption capacity of 100.32mg g-1 for europium ion entrapment. The former also had a higher diffusion rate of europium ions compared to the latter.
When compared with other magnetic nanomaterials, the synthesized polydopamine with magnetic hollow sphere possessed the highest adsorption capacity for europium ion entrapment.
In this study the authors were able to develop an enhanced magnetic nanoparticle, having an excellent adsorption rate for nuclear waste which is neither capital intensive or harmful to the environment.

REFERENCE
Fang, Q.1, Duan, S.2, Zhang, J.1, Li, J.2,4, Leung, K.C.F3. Dual Shelled Fe3O4/Polydopamine Hollow Microspheres as an Effective Eu(III) Adsorbent , Journal of Materials Chemistry A. 2017, 5, 2947-2958.
[expand title=”Show Affiliations”]- School of Medical Engineering, Hefei University of Technology, Hefei, P. R. China
- Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, P. R. China
- Department of Chemistry, Hong Kong Baptist University, Kowloon, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, P. R. China
Go To Journal of Materials Chemistry A