An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework

J. Monahan, J.C. Powell
Energy and Buildings,Volume 43, Issue 1, January 2011

Abstract

There is a growing interest in comparing the energy and consequential carbon embodied in buildings using different methods of construction and alternative materials. This paper compares the embodied carbon in a low energy, affordable house constructed using a novel offsite panellised modular timber frame system, in Norfolk UK with two traditional alternative scenarios. A lifecycle assessment (LCA) framework is used to conduct a partial LCA, from cradle to site, of the construction. An inventory of the materials and fossil fuel energy utilised in the construction was used to calculate the primary energy consumed and the associated embodied carbon. The embodied carbon was found to be 34.6 tonnes CO2 for a 3 bedroom semi-detached house, 405 kgCO2 per m2 of useable floor area. When compared with traditional methods of construction the modern methods of construction (MMC) house resulted in a 34% reduction in embodied carbon. Despite timber being the predominant structural and cladding material, concrete is the most significant material (by proportion) in embodied carbon terms, responsible for 36% of materials related embodied carbon.

Go to Journal

Check Also

Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, Ideal air load system, and Detailed - Advances in Engineering

Comparison of EnergyPlus and IES to model a complex university building using three scenarios