Quantitative visualization of boundary layers by developing quasi-common-path phase-shifting interferometer

Experimental Thermal and Fluid Science, Volume 60, 2015, Pages 231-240.

Eita Shoji1, Ryota Nakaoku1, Atsuki Komiya2, Junnosuke Okajima2,Shigenao Maruyama2

 

  1. Graduate School of Engineering, Tohoku University, Miyagi 980-8579, Japan.
  2. Institute of Fluid Science, Tohoku University, Miyagi 980-8577, Japan.

 

Abstract

The objective of this study is to achieve accurate and quantitative visualization of the boundary layer using a novel optical system that offers a large visualization area, fewer disturbance effects, integration with a wind tunnel and high phase, spatial and temporal resolution. A novel optical configuration was proposed to realize these features. In addition, high phase and spatial resolution could be realized by introducing a phase-shifting image processing technique. Finally, a novel prism was specially designed to implement the phase-shifting technique. In this study, the proposed system was evaluated by using it to quantitatively visualize boundary layers around a circular cylinder and over a flat plate. The effect of a tripwire on the flow was visualized by an interferogram. In the experiments on flow over a flat plate, the temperature distributions in the thermal boundary layer were measured accurately, and the velocity distributions were estimated from the measured temperature distributions. The experimental data were compared with a semi-analytical solution. Good agreement was obtained, and the relative error was within 5.0% in the temperature measurement.

Go To Journal

 

 

Check Also

WoodST: An Advanced Modelling Tool for Fire Safety Analysis of Timber Structures - Advances in Engineering

WoodST: An Advanced Modelling Tool for Fire Safety Analysis of Timber Structures