Robust ear based authentication using Local Principal Independent Components

Expert Systems with Applications, 11 May 2013.

Mamta , Madasu Hanmandlu

Electrical Engineering Department, Indian Institute of Technology Delhi, Delhi 110016, India.

 

Abstract

This paper presents the ear based authentication using Local Principal Independent Components (LPIC) an extension of PCA. As PCA is a global approach dealing with all pixel intensities, it is difficult to get finer details from the ear image. The concept of information sets is introduced in this paper so as to have leverage over the local information. These sets are based on the granularization of the ear image in the form of windows. The features based on these sets allow us to change the local information which goes into LPIC as the input. Thus LPIC not only uses this local information but also helps to reduce the dimensions of the deduced features far less than that can be achieved with PCA. For the extraction of sparse information from ear, features such as Effective information (EI), Energy feature (EF), Sigmoid feature (SF), Multi Quadratic feature (MQD) are derived and then LPIC is applied to get the reduced number of features. Inner product classifier (IPC) is developed for the classification of these features. The experiments carried out on constrained and unconstrained databases show that LPIC is effective not only under the ideal conditions but also under the unconstrained environment.

Go To Journal

 

AIE2

Check Also

An exact microgrid formation model for load restoration in resilient distribution system - Advances in Engineering

An exact microgrid formation model for load restoration in resilient distribution system