Dynamic Structural Behavior and Anion-Responsive Tunable Luminescence of a Flexible Cationic Metal–Organic Framework

Angewandte Chemie, Volume 125, Issue 3, pages 1032–1036, January 14, 2013

Biplab Manna, Abhijeet K. Chaudhari, Biplab Joarder, Avishek Karmakar, Dr. Sujit K. Ghosh

Indian Institute of Science Education and Research (IISER), Homi Bhabha Road, Pashan, Pune-411008 (India) 

 

 

Abstract

 

Gast- und anionenabhängig: Strukturdynamik und Lumineszenz eines kationischen porösen Gerüsts (siehe Bild) wurden durch verschiedene Analysetechniken untersucht. Die Verbindung adsorbiert hydrophobe Gastmoleküle abhängig von ihrer Größe, tauscht leicht Anionen des Gerüsts und zeigt anionenabhängige Lumineszenz.

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

 

 

Go To Journal

 

Additional Information

 

Self-assembly of a newly designed chelating organic linker with Zn (II) metal-ion furnishes a porous cationic metal-organic framework (MOF). The important feature of this framework is that it has very good structural flexibility or dynamic nature. The structural flexibility of this compound has been well investigated by single-crystal to single-crystal solid-state structural transformation. Moreover, the framework contains extra anions inside the voids to make overall framework neutral. Easy exchange of those anions with other foreign anions enables the framework to display interesting tunable luminescence based on different kinds of anions (Scheme 1). More interestingly, selective exchange of anions was observed inside the framework. Also framework showed selective sorption of hydrophobic guest molecules. This type of dynamic framework with guest and anion selective nature might have important biological and environmental application.

 

Figure Legend

Anion dependent tunable luminescence in a dynamic MOF.

 

dynamic structural

Check Also

Advancing Discovery and Growth of Crystalline Materials using Continuous-Flow, Well-Mixed Microfluidic Devices - Advances in Engineering

Advancing Discovery and Growth of Crystalline Materials using Continuous-Flow, Well-Mixed Microfluidic Devices