A Rapid Method for Determining the Oxidative Stability of Oils Suitable for Breeder Size Samples.

J Am Oil Chem Soc. 2013;90(7):933-939.

Przybylski R1, Wu J, Eskin NA.

Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada.

 

Abstract

 A method utilizing thin-layer chromatography with a flame ionization detector (TLC-FID) was developed for assessing the stability of breeder’s oil seed samples based on the formation of polar compounds. The results showed a linear relationship between peroxide value (PV) and the content of polar material in the oxidized oil. Oil samples oxidized very readily on chromarods, even at low temperature, which is a particular advantage for antioxidant screening. At 45 °C, the oil oxidation rate was relatively low, but the relationship between the content of polar material and reaction time was linear. At 65 °C, if the content of polar material was below 50 %, the above relationship was still linear. At different temperatures, the action of tocopherol appeared to vary slightly. For example, at 65 °C, the oxidative stability of the oil sample was determined by the content of tocopherol, especially {Gamma}-tocopherol. At 45 and 55 °C, the oxidative stability was determined by both the content of tocopherol and polyunsaturated fatty acids. Of the tocopherol isomers, {Gamma}-tocopherol exhibited the highest antioxidant potency, consistent with the published literature. These results suggest that chromarods provide good media for monitoring oil oxidation for antioxidant screening. A particular advantage is the use of very small oil samples, usually 1-2 uL, and the ability to analyze multiple samples at the same time.

 

Go To Journal

 

Check Also

Computational Insights into High-Pressure Equilibria of Supercritical Gases in Ammonia - Advances in Engineering

Computational Insights into High-Pressure Equilibria of Supercritical Gases in Ammonia