Tri-axial deformation of a plastic-rigid solid

Robert L. Bish
Acta Mechanica, Volume 223, Number 3, 2012

Abstract

The paper deals with the deformation of an ideal plastic solid that is initially rigid, i.e., elastic deformations are neglected. In addition, the solid flows by means of the mechanism of extended slip, for which the rotation-rate vector field remains continuous and the strain-rate tensor is solenoidal. The Tresca yield criterion applies to such a solid and with an associated flow-rule is represented in a manner that includes both bi-axial and tri-axial states of strain. Two new theorems are proved, and a second-order partial differential equation is derived for the first invariant of the stress tensor (hydrostatic pressure); the analogue of a similar published equation for the bi-axial strain case. To illustrate the methodology, the above theory is applied to the tri-axial problem of a thick metal plate clamped round a circle and deflected by means of pressure. It is shown, from the exact solution, that the errors due to the use of the approximate membrane formula for a clamped thin plate are small, even for a 6mm thick plate clamped on a circle 100mm in diameter. Surprisingly, there is an initial thickening of the plate and it is shown that, regardless of the plate thickness, the pressure passes through a maximum at a deflection equal to 1/Ö3 of the radius of the clamping circle.

Go to Journal

Check Also

Fatigue Crack Growth Behavior of WAAM Steel Plates: Experimental Analysis and Comparative Study - Advances in Engineering

Fatigue Crack Growth Behavior of WAAM Steel Plates: Experimental Analysis and Comparative Study